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Abstract 

Adaptive learning techniques have typically scheduled 
practice using learners' accuracy and item presentation 
history. We describe an adaptive learning system (Adaptive 
Response Time Based Sequencing—ARTS) that uses both 
accuracy and response time (RT) as direct inputs into 
sequencing. Response times are used to assess learning 
strength and to determine mastery, making both fluency and 
accuracy goals of learning. ARTS optimizes spacing by 
expanding item recurrence intervals as an inverse function of 
RT. In Experiment 1, we compared ARTS to Atkinson’s 
(1972) Markov model system using geography learning and 
found substantially greater learning efficiency for ARTS. In 
Experiment 2, we deployed the system in a real learning 
setting. Third graders attending an online school mastered 
basic multiplication facts in about two hours using ARTS, 
outperforming a control group using standard instruction. 
These results suggest that response time-based adaptive 
learning has remarkable potential to enhance learning in 
many domains. 

Keywords: learning; adaptive learning; learning technology; 
education; instruction and teaching; memory. 

 

Introduction 

Principles of learning and memory applied to instruction 

might be powerfully amplified in their effects if, through 

adaptive learning, they can be customized to the needs of 

individual learners and tasks.  Since pioneering work by 

Atkinson and colleagues (e.g., Atkinson, 1972), various 

adaptive learning schemes have been proposed (e.g., Pavlik 

& Anderson, 2008; Wozniak & Gorzalanczyk, 1994). Most 

systems require prior research to estimate model parameters 

for particular domains and learners.  Sequencing is usually 

calculated by combining parameters, response accuracy and 

presentation history in a learning session.  

We have developed a novel adaptive learning system 

(Adaptive Response Time Based Sequencing -- ARTS) that 

uses response times along with accuracy as primary inputs 

to govern adaptive sequencing in interactive learning. There 

are two primary reasons to incorporate response times in 

adaptive learning. First, considerable research indicates the 

importance of spacing in learning (for a recent review, see 

Pashler, Rohrer, Cepeda & Carpenter, 2007). When multiple 

items, categories, or procedures are to be learned, 

intervening intervals and/or items between presentations of 

a given item in a learning session can greatly improve the 

efficiency and durability of learning. Some important 

benefits of spacing relate to changing spacing as learning 

progresses. Using response times on interactive trials offers 

a more direct indicator of learning, making them a useful 

input into adaptive scheduling. Second, fluency itself is 

often a goal of learning. Using response times to set and 

meet learning criteria may offer important benefits for long 

term retention and fluent use of knowledge in complex 

problem solving situations.  

 

Spacing and Adaptive Learning 

One powerful spacing effect is that expanding intervals of 

retrieval practice produce better learning, relative to fixed 

intervals (Landauer & Bjork, 1978; Cull et al., 1996). Very 

recent research provides evidence for a substantial 

advantage of expanding the retrieval interval when material 

is highly susceptible to forgetting or when intervening 

material is processed between testing events (Storm, Bjork 

& Storm, 2010), conditions that apply to many formal 

learning situations. 

Most explanations of the value of expanded retrieval 

intervals, and other spacing principles, involve an 

underlying notion of learning strength.  Learning strength 

can be thought of as a hypothetical construct related to 

probability of successful recall on a future test.  When a new 

item is presented, learning strength may be low, but it 

typically increases with additional learning trials.  The value 

of any new test trial varies with an item's learning strength.  

Specifically, evidence suggests that difficulty of successful 

retrieval is a crucial factor (Landauer & Bjork, 1978; 

Karpicke & Roediger, 2007; Pyc & Rawson, 2009).  Pyc & 

Rawson (2009) labeled this idea the "retrieval effort 

hypothesis": More difficult, but successful, retrievals are 

more beneficial. They studied the relation of number of 

successful retrievals to later memory performance, while 

manipulating the difficulty of those retrievals via number of 

intervening trials.  Greater numbers of intervening trials led 

to better retention.  These investigators also found evidence 

that, as had been suggested in other work, larger gaps 

produced longer average response latencies (Pyc & Rawson, 

2009), a finding consistent both with the idea that a larger 
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gap affects an item's learning strength and with the idea that 

learning strength is reflected in response times. One can 

summarize many of these findings by saying that the best 

time for a new presentation of an item is after the longest 

possible interval at which retrieval will still succeed. The 

idea is to stretch, but not snap, the retention interval. 

Research on spacing has typically used fixed schedules, 

either equal intervals of item recurrence or a fixed schedule 

of increasing intervals.  Yet different learners are likely to 

have different learning strengths for different items at 

different times, as well as differing rates of change in 

learning strength. Fixed schedules of recurrence cannot 

accommodate such variations, but adaptive learning 

schemes can. Previous adaptive approaches have relied on 

accuracy and trial history to predict learning strength, either 

in a Markov model estimating transition probabilities 

between different states of retention (e.g., Atkinson, 1972) 

or more elaborate models of learning (Pavlik & Anderson, 

2008; Wozniak & Gorzelanczyk, 1994). Pavlik & Anderson 

(2008) reported strong learning results, better than with 

Atkinson's (1972) approach, using a detailed cognitive 

model of acquisition, based partially on ACT-R (Anderson 

& Lebiere, 1998), using prior studies to acquire learning 

parameters for individual items and comparable learners. 

Deploying such an approach in real world learning settings 

requires considerable up-front investment. Also, despite the 

value of efforts to model the learning process in exact detail, 

there are limits to the accuracy of any known a priori 

model.  Variability among items, learners, and their 

interactions is substantial, requiring ongoing adjustments to 

the model,
1
 and specific additions (such as a way to 

incorporate spacing effects) are needed to incorporate 

phenomena not originally predicted by ACT-R (Pavlik & 

Anderson, 2005, 2008).  

Basing adaptive schemes on both accuracy and response 

times offers a more direct way to assess learning strength 

for individual learners and items in an ongoing manner. In 

our system, retention intervals expand as an inverse function 

of response time (for accurate responses), such that faster 

responses automatically produce longer recurrence intervals. 

Consistent with many studies and models, the approach 

assumes that learning strength is reflected in response times 

(Benjamin & Bjork, 1996; Karpicke & Roediger, 2007; Pyc 

& Rawson, 2009).  

 

A Response Time Based Adaptive Sequencing System 

Consider a set of n items (facts, patterns, concepts, 

procedures) to be learned. How can we implement learning 

principles summarized above to optimize learning of the set 

for the individual learner?  We do so by applying principles 

of learning to all learning items simultaneously in a priority 

score system, in which all items are assigned scores 

                                                
1
 Because procedures for specifying these adjustments and 

determining numerous other parameters of the model for a new 

learning domain are not available in published work, we did not 

implement and test the Pavlik & Anderson (2008) system here.  

indicating the relative importance of that item appearing on 

the next learning trial. Priority scores for each item are 

updated after every trial, as a function of learner accuracy 

and RTs,
2
 trials elapsed, and in view of predetermined 

mastery criteria.  Learning strength is assessed continuously 

and in some implementations, cumulatively, from 

performance data.  The most straightforward version of our 

sequencing algorithm chooses the highest priority item for 

presentation on each learning trial. Adjustable parameters 

allow flexible and concurrent implementation of several 

principles of learning and memory. One important principle 

is that the retention interval automatically increases for an 

item as its learning strength grows.  

In this report, we focus on item sequencing, although the 

system can also be applied to procedural learning and to 

perceptual or category learning, in which each presentation 

of a category involves a novel instance (Kellman, Massey & 

Son, 2010).  

The sequencing algorithm is flexible; it may utilize any 

equations relating elapsed time or trials, accuracy, and RT to 

the priority for presentation of an item on a given learning 

trial. When any particular function of these variables is 

used, parameters may be adjusted to suit particular learning 

contexts and even individual learners. We describe here a 

characteristic priority score equation that allows 

implementation of several key principles of learning and has 

proven highly effective in our prior research.  The Priority 

Score for item i (Pi ) is given by: 

Pi = a(Ni - D) [b(1 - α i) Log (RTi/r)+ α iW]        

where:     

Ni   =   number of trials since item i was presented 

D   =   enforced delay constant (trials) 

a, b, r  =   weighting constants 

αi     =   0, if learning item was last answered correctly 

           =   1, if learning item was last answered incorrectly 

    W    =   priority increment for an error 

RTi  = response time on most recent presentation of 

      item i   

Priority scores are dynamically updated after each trial.  

In many applications, initial priority scores are given to all 

items, and an item’s score does not change until after it is 

first selected for presentation.  This establishes a baseline 

priority for feeding in new items that may be balanced 

against changing priorities for items already introduced.  

Parameters may be set to favor recurrence of new items, 

items already seen, or combinations of the two. 

Rapid Reappearance of Missed Items.  The system 

ensures rapid re-presentation of items answered incorrectly 

by the assignment of a high priority weighting increment 

                                                
2
 Adaptive learning systems that schedule learning events based on 

accuracy and speed of response are covered by US Patent 

#7052277.  All rights reserved. For information, contact 

info@insightlearningtech.com. 
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(W).  The binary variable αi is used to activate one or the 

other part of the equation, depending on whether the last 

trial response was correct or not.  If correct, αi is set to 0, 

and priority becomes a function of RT.  If incorrect, αi is set 

to 1, and priority increment W applies to the item.  With 

ordinary parameter settings, the error increment W will 

exceed all initial priority score assignments, as well as the 

highest priority that may result from a slow, correct answer.  

However, reappearance of missed items is still subject to 

enforced delay (see below).  With typical parameter 

settings, a missed item will tend to have highest priority, 

once it passes the enforced delay. 

Interleaving / Enforced Delay.  To prevent presentation of 

an item while its answer remains in working memory 

(Karpicke & Roediger, 2007; Taylor & Rohrer, 2010), the 

system is normally configured to prevent the presentation of 

the same item on consecutive trials.  The parameter Ni and 

constant D determine the enforced delay, because (Ni – D) 

is a global multiplier in the equation.  A value of 2 is typical 

for D, and Ni represents number of trials since last 

presentation of item i.  Thus, the overall priority of item i 

will be negative on the trial immediately following the error 

(because (Ni –D) = -1).  On the next trial, the priority will be 

0 (because (Ni – D) = 0).  For both negative and zero values, 

the priority for re-presentation of item i will be lower than 

all learning items having positive priority values.  From then 

on, the priority for a missed item will be high, as its priority 

increment W grows proportionally to the number of elapsed 

trials since last presentation.  

Dynamic Spacing Based on RT. The system can use 

various functions of RT but typically produces large priority 

weightings for slow, accurate responses, although not as 

large as for missed items. In the exemplar priority equation: 

For an item answered correctly, αi = 0, and the part of the 

equation involving RT is activated. RTs for inaccurately 

answered items are not considered meaningful. For correctly 

answered items, a log function of RT is used, as differences 

between long RTs (e.g., 20 and 30 sec) are probably not as 

significant as differences between short RTs (e.g., 2 and 12 

sec). In this arrangement, longer spacing between 

presentations of an item arises automatically as the learner 

gives faster (accurate) responses. 

Retirement Criteria. Adaptive learning focuses a learner’s 

effort where it is needed most. We use the term retirement 

to describe removal of an item or category from the learning 

set, based on attainment of learning criteria. Pyc & Rawson 

(2007) called this "dropout" and found evidence that greater 

learning efficiency can be achieved with this feature, 

especially in highly demanding learning situations.  In Exp. 

1 below, the learner had to answer an item correctly and 

under a criterion response time on three consecutive (widely 

spaced) presentations to retire that item. Requiring several 

consecutive, fast responses to an item automatically ensures 

stretching of retention intervals.  Thus, a retired item will 

have been answered quickly and accurately several times 

across long delays before being retired. 

 Our approach concurrently incorporates a number of 

learning principles supported by recent research. The ARTS 

system is built around short interactive trials, an approach 

supported by considerable evidence indicating that 

interactive “testing” trials, in which the learner makes a 

response, are highly effective in learning, moreso than 

passive presentations or “study” trials (Carpenter, Pashler, 

Wixted & Vul, 2008; Karpicke & Blunt, 2011). The use of 

systematic mastery criteria, including speed, assures both 

comprehensiveness and fluency in learning. As cognitive 

load is an important limiting factor in learning (Chandler & 

Sweller, 1991), it is important that items that are 

foundations for later learning be mastered to a reasonable 

degree of fluency. Finally, the rich stream of performance 

data accumulated by the ARTS system enables continuous 

assessment by instructors, and also provides several forms 

of learner-directed feedback, which can support specific 

increments in learning and sustain motivation. 

Exp. 1  Comparing Adaptive Learning Systems 

In Experiment 1, we compared ARTS to Atkinson’s (1972) 

system, a classic in the literature on adaptive learning, and a 

benchmark against which other systems have been 

compared (e.g., Pavlik & Anderson, 2008). Atkinson's 

system was based on a Markov model tracking strength of 

learning items.  Presentations were chosen as a function of 

probabilities of transitioning between three hypothetical 

learning states -- unlearned, temporarily learned or 

permanently learned. The algorithm attempted to select 

items that would have the highest probability of moving 

from an unlearned or temporarily learned state into the 

permanently learned state if tested and studied on the next 

trial.  Previous learning data were analyzed to determine the 

model’s initial parameters, including learning and forgetting 

rates and prior knowledge.  Atkinson successfully used his 

model to improve learning of German-English vocabulary 

pairs (and used related systems in a variety of domains; for a 

review, see Atkinson, 1976).  Performance, as measured by 

recall on a delayed post-test, was superior to random 

presentation.  In the present experiment, we compared the 

ARTS system with a version of the Atkinson model using 

material that consisted of names and locations of countries 

on a map of Africa.  To implement the Atkinson condition, 

item parameters were estimated using data from a previous 

experiment, in a manner similar to that in Atkinson (1972). 

No prior information was required for implementation of the 

ARTS system. 

Method 

50 undergraduates, participating for course credit, were 

randomly assigned to two learning conditions.  One group 

received training using ARTS.  The other group received 

training using the Atkinson scheduling algorithm.  Each 

group of subjects took a pre-test in which they were asked to 

identify 24 countries on a map of Africa. We used countries 

whose location was relatively unfamiliar (e.g., Djibouti, but 

not Egypt). On each trial, a country was highlighted on the 
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map, and participants were asked to choose its name from a 

list of 24 country names. Countries were presented 

individually and no feedback was given.  

The training task was identical to the pre-test, except that 

participants received feedback on each trial and item 

selection was governed by one of the two algorithms.  In the 

ARTS condition, participants were trained until they had 

reached a learning criterion (responding correctly for each 

item three times in a row under 10 sec per item). Individual 

countries were removed from the learning set when 

retirement criteria were reached. The Atkinson system has 

no prescribed stopping point; we ended learning sessions 

after 45 minutes or a 234 trial cut-off, whichever came first.  

The end point was determined from pilot testing, where 234 

trials was a number of trials in which more than half of 

participants in the ARTS condition retired all items. 

Immediately after training, participants were given a post-

test that was identical to the pre-test, but with countries in 

random order.  One week later, participants returned to 

complete an identical delayed post-test.  The entire first 

session took no longer than 1 hour. The experiment was run 

twice. The two versions were identical except that they were 

run on separate computers. In the first version, we 

discovered that the computer was introducing a delay of a 

few seconds between trials for the Atkinson condition. We 

carried out a new version with this problem eliminated. 

Patterns of results were indistinguishable in the two versions 

of the experiment, so they have been combined for this 

analysis. 

Results 

We express our primary results in terms of learning 

efficiency—post-test gains in accuracy divided by the 

number of learning trials invested. Adaptive response-time 

based sequencing produced substantially greater efficiency 

(53.4% greater) than the Atkinson system (Figure 1). 

Statistical analyses showed that efficiency was reliably 

higher for the ARTS condition (M=0.132) than for the 

Atkinson algorithm condition (M=0.086), (t(48)= 4.33, 

p<0.001).  Post-test accuracy considered apart from learning 

trials invested was also reliably higher in the ARTS 

condition (M=0.827 vs. 0.732), (t(48)=2.39, p=0.021). A 

different way to view the results is to consider efficiency 

based on total time rather than trials invested (Pavlik & 

Anderson, 2008). Time-based efficiency (items learned per 

minute of training) is shown in Figure 2. In the immediate 

post-test, time-based efficiency for ARTS was 79% greater 

than in the Atkinson condition (M=0.964 for ARTS vs. 

0.539 for Atkinson; t(30)=4.50, p<0.001). Values for time-

based efficiency for the Atkinson condition were taken only 

from the subset of participants who ran on computers that 

were not affected by a calculation delay that added space 

between trials.   

 We carried out a separate analysis of the 1-week delayed 

post-test, as not every subject was tested at a delay. 

Participants who completed the delayed posttest (41 of 50) 

were included.  For trial-based efficiencies, an ANOVA 

with factors of condition and phase showed a reliable effect 

of condition (F(1,37) = 17.6, p< 0.001), but no interaction 

(F(1,37) = 0.811, p=0.371).  Efficiency for ARTS was 48% 

greater than the Atkinson algorithm on the delayed test, and 

the two conditions differed reliably (M=0.092 vs. M=0.062 

respectively; t(39)=2.09, p=0.043). For time-based 

efficiencies, reliable differences were found between ARTS 

and Atkinson algorithms across tests (F(1,37)=17.6, 

p<0.001), with no interaction (F(1,37)=0.81, p=0.370; see 

Figure 2).  At delayed test, the ARTS algorithm showed an 

89% advantage in time-based efficiency (0.662 vs. 0.35, 

t(30) = 2.78, p=0.009). Response times improved from 

pretest to posttest but the improvement did not vary by 

condition.  

Discussion 

These results suggest that adaptive sequencing based on 

response times and accuracy can produce substantial 

enhancements in learning relative to other methods.  The  

ARTS system was 54% more efficient on immediate post-

test based on trials and 76% more efficient based on time 

than the Atkinson (1972) approach, and these differences 

were equally evident on delayed post-test. The Atkinson 

condition tested in this study has been shown in prior work 

to offer substantial improvement over random schedules of 

presentation (Atkinson, 1972), so we might infer that the 

ARTS system would outperform random schedules 

substantially, a prediction confirmed in other work 

(Kellman, Zucker & Massey, 2007).     

   The systems tested here differed in their prior assumptions 

and overall complexity. The Atkinson model, as with 

model-based systems in general (e.g., Pavlik & Anderson, 

2008) requires pre-programming of learning parameters 

Figure 1: Efficiency for ARTS and Atkinson 

scheduling algorithms at immediate and delayed post-

test.  Efficiency equals improvement in number of 

post-test items answered correctly per trial of training.   
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based on data obtained from a prior learning experiment. 

With ARTS, no prior study is needed to apply the system to 

new domains or learners. Use of response times in 

interactive learning provides a more direct and up-to-date 

indication of learning strength as input to a sequencing 

algorithm. 

Exp. 2  Applying ARTS to Elementary 

Mathematics Learning 

Studying adaptive learning in genuine learning settings is 

crucial but has been less common than laboratory studies. 

One kind of challenge in real-world learning contexts is the 

need to do prior studies to estimate parameters in model-

based systems. Another kind of challenge may be issues of 

diverse users, motivation, and learning materials. Students 

engaged in school learning may be motivated differently 

from paid adult subjects (as in Pavlik & Anderson, 2008), 

and it would be valuable to extend beyond the foreign 

language vocabulary used in most previous studies.  

To explore these issues, we tested ARTS in a 

collaborative project with an online learning company that 

runs online charter schools in many states. We focused on 

third graders’ learning of basic multiplication facts. 

Although memorization of basic math facts is one of the 

least appealing parts of learning in mathematics, it is a 

crucial foundation for later work and success in math 

(NCTM, 2006). Adaptive sequencing technology, we 

believe, can provide a highly efficient way to ensure 

comprehensive learning of math facts.  

Method 

We developed Best Basic Math™, an adaptive program for 

elementary math, and we designed a study to focus on the 

learning of basic multiplication facts up to 12 x 12. 

Specifically, 3rd grade students (n=72) in an online school 

in Pennsylvania logged in from home over a number of 

sessions in one of two conditions. Both received a pretest 

and posttest of 30 multiplication problems. Assessments and 

the learning module were web-delivered.   In the treatment 

group (n=41), the module retained each participant's 

progress and current place in the learning phase across 

different days, and each participant's learning continued 

until all problems had been retired, where retirement 

entailed answering 4 out of the previous 5 presentations of 

an item correctly in less than 6.5 sec.  These criteria ensured 

that several presentations would be widely spaced by the 

time any item was retired. Response time and accuracy were 

recorded and used in adaptive sequencing, as well as to 

determine item retirement. Feedback was given on each trial 

and also for 10-trial blocks.  Overall progress toward 

completion was indicated at the bottom of the screen using 

mastery strips. For the control group (n=31), standard math 

lessons including multiplication content were presented as 

usual in the daily online sessions. 

Results 

For the ARTS condition, learning basic multiplication 

through 12 x 12 took on average 123.5 minutes (median =  

109.8 min) before learning criteria were reached.  Given that 

we were most interested in learners who had not already 

mastered most of this content, a primary analysis involved 

those students (n=28) who began with ≤ 80% accuracy on 

the pretest (mean pretest accuracy = 49%; mean RT = 12.6 

sec per problem).  Posttest scores averaged 83% accuracy 

and 8.3 sec per problem, gains of 69% for accuracy and 

34% in fluency.  Pretest to post-test gains were highly 

reliable for accuracy, t(27) = 10.43, p < .001, and RT, t(27) 

= 5.29, p < .001.  Effect sizes (Cohen’s d) were 2.0 

(accuracy) and 1.53 (RT).  The online learning company's 

researchers compared treatment students (n=41) with 

control students (n=31) who had standard assigned lessons 

for the same period.  Groups were matched for prior 

performance on standardized tests.  Gains of accuracy and 

speed for the ARTS group were highly reliable relative to 

the control group, p < .01. Effect sizes for treatment vs. 

control were .49 for accuracy and 1.29 for fluency.  (These 

latter analyses did not exclude learners who were at or near 

ceiling on accuracy in the pretest.)    

General Discussion 

The studies reported here indicate that the ARTS system 

makes several contributions to improving the state of the art 

in technology-based adaptive learning systems. Specifically, 

in comparison to another well-known adaptive system 

(Atkinson, 1972), incorporating response time as a dynamic, 

real-time input to learning algorithms designed to 

implement established laws of learning and memory 

significantly improves the efficiency of learning. Strong 

learning gains were obtained in both a laboratory setting 

with adult learners as well as an on-line school setting with 

young elementary students.  

Figure 2: Time-based efficiency by test phase and 

scheduling algorithm.  Efficiency here indicates 

items learned per unit time (minutes) as shown by 

the immediate and delayed post-tests. 
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The continuous stream of performance data (accuracy and 

speed) used in this adaptive system offers other important 

benefits to learning. One is the comprehensiveness of 

learning, based on tracking all items or categories to be 

learned and leading each learner to mastery criteria. In 

Experiment 2, about two hours of learning was sufficient to 

give 3rd graders reasonably complete knowledge of 

multiplication through 12 x 12.  Although we did not study 

it directly here, another benefit is the use of response times 

in learning criteria as a means of producing fluency in 

learning.  Finally, the rich data used by the ARTS system 

offers unusually rich opportunities for formative assessment 

and diagnosis of learning hurdles for both individuals and 

groups.  

While the studies reported here have focused on 

sequencing meaningful factual items in mathematics and 

geography, the adaptive system can also be applied to other 

types of content, such as perceptual, category, or procedural 

learning. In other research, we have used adaptive 

algorithms to enhance pattern learning and structure 

extraction in high-level conceptual domains (e.g., Kellman, 

Massey & Son, 2010).  Further, the embodiment of the 

adaptive system in learning technology that can be deployed 

without conducting prior studies to set parameters supports 

its potential for cost-effective application in a great variety 

of domains and learning settings, such as professional 

training in medicine, aviation, and chemistry; distance 

learning; and learning in K-12 schools and universities. 
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